投稿類別：數學類

篇名：
「心」之所「向」——
探討三角形的各心的位置及關係

作者：
許文凱。私立復興高中。高二愛班。

指導老師：
劉惠平老師
壹、前言:

前些陣子,數學正好上到向量的單元（註一），其中課本有提到，有個公式可以表示任意一點到三角形的重心之向量通式。這個方程式引起了我的興趣，每個心是否都有向量通式呢？各心之間有什麼樣的關聯呢？而這些關連性有沒有實際上的用途呢？

貳、正文：

一、通式推導：

首先，我希望利用三角形的關係和向量的性質來尋找能夠表示三角形之重心、內心、外心、垂心的位置的向量通式。

(一) 通式:

ΔABC 中，P 為平面上一點，且 aΔBPC : aΔCPA : ΔAPB = l : m : n 則：

延長 AP 至 BC 上點 D

\[\overrightarrow{BD} : \overrightarrow{CD} = \Delta ABP : \Delta ACP = m:n \]，則 \(\overrightarrow{APD} = \frac{nl}{m+n} \)。

可知 \(\overrightarrow{AP} : \overrightarrow{PD} = n : \frac{nl}{m+n} = (m+n) : l \)，即 \(\overrightarrow{AD} = \frac{l+m+n}{m+n} \overrightarrow{AP} \)

由向量共線性質知（註二）

\[\overrightarrow{AD} = \frac{m}{m+n} \overrightarrow{AB} + \frac{n}{m+n} \overrightarrow{AC} \]

\(\Rightarrow \frac{l+m+n}{m+n} \overrightarrow{AP} = \frac{m}{m+n} \overrightarrow{AB} + \frac{n}{m+n} \overrightarrow{AC} \)

\(\Rightarrow (l+m+n) \overrightarrow{AP} = m \overrightarrow{AB} + n \overrightarrow{AC} \)

\(\Rightarrow (l+m+n) \overrightarrow{AP} = m\left(\overrightarrow{AP} + \overrightarrow{PB} \right) + n\left(\overrightarrow{AP} + \overrightarrow{PC} \right) \)

\(\Rightarrow l \overrightarrow{PA} + m \overrightarrow{PB} + n \overrightarrow{PC} = \overrightarrow{0} \) \(\text{①} \)

(二) 重心：

當 P 為 ΔABC 的重心 G 時

∵ aΔBGC = aΔCGA = aΔAGB \(: l = m = n \)

則①式知

\(I \overrightarrow{GA} + m \overrightarrow{GB} + n \overrightarrow{GC} = \overrightarrow{0} \) \(\Rightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0} \) \(\text{②} \)

若 O 為任意點，則由②式知

\(\left(\overrightarrow{GO} + \overrightarrow{OA} \right) + \left(\overrightarrow{GO} + \overrightarrow{OB} \right) + \left(\overrightarrow{GO} + \overrightarrow{OC} \right) = \overrightarrow{0} \)

\(\Rightarrow \overrightarrow{OG} = \frac{1}{3} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right) \) \(\text{③} \)
當O移到A，則由3式知
\[\overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} \right) \Rightarrow \overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} \right) \]

（三）內心：
當P為\(\triangle ABC\)的內心I時，\(\triangle ABC\)三邊長為\(a, b, c\)。
\[\therefore a\triangle BIC : a\triangle CIA : a\triangle AIB = \frac{ar}{2} : \frac{br}{2} : \frac{cr}{2} = a : b : c \]
則由①式知
\[a\overrightarrow{IA} + b\overrightarrow{IB} + c\overrightarrow{IC} = \overrightarrow{0} \]
由⑤知
\[a\overrightarrow{IA} + b\left(\overrightarrow{IA} + \overrightarrow{IB} \right) + c\left(\overrightarrow{IA} + \overrightarrow{IC} \right) = \overrightarrow{0} \]
\[\Rightarrow \overrightarrow{AI} = \frac{b}{a + b + c} \overrightarrow{AB} + \frac{c}{a + b + c} \overrightarrow{AC} \]

（四）外心：
當P為\(\triangle ABC\)的外心O時
\[\because a\triangle BOC : a\triangle COA : a\triangle AOB = \frac{1}{2} \cdot R \cdot R \cdot \sin 2\alpha : \frac{1}{2} \cdot R \cdot R \cdot \sin 2\beta : \frac{1}{2} \cdot R \cdot R \cdot \sin 2\gamma \]
\[= \sin 2\alpha : \sin 2\beta : \sin 2\gamma \]
則由①式知
\[(\sin 2\alpha)\overrightarrow{OA} + (\sin 2\beta)\overrightarrow{OB} + (\sin 2\gamma)\overrightarrow{OC} = \overrightarrow{0} \]

（五）垂心：
當P為\(\triangle ABC\)的垂心H時
在\(\triangle BCF\)與\(\triangle DCH\)中
\[\because \beta + \angle BCF = \angle CHD + \angle DCH \quad \therefore \angle CHD = \beta \]
同理\(\angle BHD = \gamma \), \(\angle CHE = \alpha \)。
\[\because a\triangle AHB : a\triangle AHC = \overrightarrow{HD} : \overrightarrow{CD} \]
\[= \overrightarrow{HD} \cdot \tan \gamma : \overrightarrow{HD} \cdot \tan \beta \]
同理\(a\triangle BHC : a\triangle CHA : a\triangle AHB = \tan \alpha : \tan \beta : \tan \gamma \)
則由①式知
\[(\tan \alpha)\overrightarrow{HA} + (\tan \beta)\overrightarrow{HB} + (\tan \gamma)\overrightarrow{HC} = \overrightarrow{0} \]

當確認完每個向量通式後，我希望能找出它可能的用途，而我的第一個念頭，就是証明尤拉線（註三）的性質。一般的證明都是以重、外、垂三心的幾何性質來下手，而我只需要用向量通式就可證明。

二、尤拉線之證明：
利用以上推導的公式，我可以證明尤拉線（圖六）的性質:

\[O - G - H \] 且 \[2 \overrightarrow{OG} = \overrightarrow{GH} \]

（圖六）尤拉線

\[
\begin{align*}
\overrightarrow{AG} &= \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC} \\
\overrightarrow{AO} &= \frac{\sin 2B}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AB} + \frac{\sin 2C}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AC} \\
\overrightarrow{AH} &= \frac{\tan B}{\tan A + \tan B + \tan C} \overrightarrow{AB} + \frac{\tan C}{\tan A + \tan B + \tan C} \overrightarrow{AC} \\
\end{align*}
\]

\[
\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C \land \sin 2B = 2 \sin B \cos B
\]

\[
\Rightarrow \overrightarrow{AO} = \frac{\cos B}{2 \sin A \sin C} \overrightarrow{AB} + \frac{\cos C}{2 \sin A \sin B} \overrightarrow{AC}
\]

\[
B = \pi - (A + C)
\]

\[
\Rightarrow \overrightarrow{AO} = \frac{1 - \cot A \cot C}{2} \overrightarrow{AB} + \frac{1 - \cot A \cot B}{2} \overrightarrow{AC}
\]

\[
\tan A + \tan B + \tan C = \tan A \tan B \tan C (\because A + B + C = \pi)
\]

\[
\Rightarrow \overrightarrow{AH} = \cot A \cot C \overrightarrow{AB} + \cot A \cot B \overrightarrow{AC}
\]

\[
\overrightarrow{OG} = \overrightarrow{AG} - \overrightarrow{AO} = \left(\frac{1}{3} - \frac{1 - \cot A \cot C}{2} \right) \overrightarrow{AB} + \left(\frac{1}{3} - \frac{1 - \cot A \cot B}{2} \right) \overrightarrow{AC}
\]

\[
= \frac{\cot A \cot C - \frac{1}{3}}{2} \overrightarrow{AB} + \frac{\cot A \cot B - \frac{1}{3}}{2} \overrightarrow{AC}
\]

\[
\overrightarrow{GH} = \overrightarrow{AH} - \overrightarrow{AG} = \left(\cot A \cot C - \frac{1}{3} \right) \overrightarrow{AB} + \left(\cot A \cot B - \frac{1}{3} \right) \overrightarrow{AC}
\]

\[
\therefore 2 \overrightarrow{OG} = \overrightarrow{GH} \quad \text{得證}
\]
以上是我對尤拉線的另一種證明法。但我還希望可以找到更多向量通式的用途。因此我想到了與三角形邊長的關係。

三、過兩心之直線：

接著，利用推導的四心公式，作過重、內、外、垂四心中兩心的直線，截其所在之三角形的邊長比。

（一）過重心、內心之直線：

設一三角形 ABC，其重心為 G，內心為 I。過 G、I 作一直線交 AB、AC 於 P、Q 兩點（如圖七），設 $\overrightarrow{AB} = n \overrightarrow{Ap}$，$\overrightarrow{AC} = m \overrightarrow{AQ}$：

$\overrightarrow{AG} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC} = \frac{n}{3} \overrightarrow{Ap} + \frac{m}{3} \overrightarrow{AQ}$

$\overrightarrow{AI} = \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC} = \frac{nb}{a+b+c} \overrightarrow{Ap} + \frac{mc}{a+b+c} \overrightarrow{AQ}$

∴ $P - G - I - Q$

$\begin{align*}
\frac{n + m}{3} & = 1 \\
\frac{nb}{a+b+c} + \frac{mc}{a+b+c} & = 1
\end{align*}$

$\Rightarrow n + m = 3$ 且 $nb + mc = a + b + c$

$\Rightarrow n = \frac{a + b + c}{b - c}, m = \frac{a + 2b - c}{b - c}$

接著藉由 Geogebra 軟體所算出來的數據（見圖七）帶入所推導出的通式，帶出的結果符合實際上的數值，這也驗證了此的通式。
（二）過重心、外心之直線：

設一三角形 ABC，其重心為 G、外心為 O。過 G、O 作一直線交 \(\overrightarrow{AB} \)、\(\overrightarrow{AC} \) 於 P、Q 兩點（如圖八），設 \(\overrightarrow{AB} = n \overrightarrow{AP} \)，\(\overrightarrow{AC} = m \overrightarrow{AQ} \)。

接著藉由 Geogebra 軟體所算出來的數據（見圖八）帶入所推導出的通式，帶出的結果符合實際上的數值，這也驗證了此的通式。
（三）過重心、垂心之直線：

設一三角形 ABC，其重心為 G，垂心為 H。過 G、H 作一直線交 AB、AC 於 P、Q 兩點（如圖九），設 AB = n \vec{AP}，AC = m \vec{AQ}：

\[\begin{align*}
\vec{AG} &= \frac{1}{3} \vec{AB} + \frac{1}{3} \vec{AC} = \frac{n}{3} \vec{AP} + \frac{m}{3} \vec{AQ} \\
\vec{AH} &= \frac{\tan B}{\tan A + \tan B + \tan C} \vec{AB} + \frac{\tan C}{\tan A + \tan B + \tan C} \vec{AC} \\
&= \frac{n \tan B}{\tan A + \tan B + \tan C} \vec{AP} + \frac{m \tan C}{\tan A + \tan B + \tan C} \vec{AQ} \\
\end{align*} \]

∴ P = G = H = Q

\[\frac{n}{3} + \frac{m}{3} = 1 \]

\[\frac{n \tan B}{\tan A + \tan B + \tan C} + \frac{m \tan C}{\tan A + \tan B + \tan C} = 1 \]

\[n + m = 3 \]

\(\begin{align*}
n \tan B + m \tan C &= \tan A + \tan B + \tan C \\
n &= \frac{\tan A + \tan B - 2 \tan C}{\tan B - \tan C}, m = -\frac{\tan A + 2 \tan B - \tan C}{\tan B - \tan C} \\
\end{align*} \]

接著藉由 Geogebra 軟體所算出來的數據（見圖九）帶入所推導出的通式，帶出的結果符合實際上的數值，這也驗證了此的通式。
「心」之所「向」───探討三角形的各心的位置及關係

（四）過內心、外心之直線：

設一三角形 ABC，其內心為 I，外心為 O。過 O、I 作一直線交 AB、AC 於 P、Q 兩點（如圖十），設 \(\overrightarrow{AB} = n \overrightarrow{AP} \)，\(\overrightarrow{AC} = m \overrightarrow{AQ} \)。

\[
\begin{align*}
\overrightarrow{AI} &= \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC} \\
\overrightarrow{AO} &= \frac{\sin 2B}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AB} + \frac{\sin 2C}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AC} \\
&= \frac{n \sin 2B}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AP} + \frac{m \sin 2C}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AQ}
\end{align*}
\]

\[\therefore P - I - O - Q\]

\[
\begin{align*}
\frac{nb}{a+b+c} + \frac{mc}{a+b+c} &= 1 \\
\frac{n \sin 2B}{\sin 2A + \sin 2B + \sin 2C} + \frac{m \sin 2C}{\sin 2A + \sin 2B + \sin 2C} &= 1
\end{align*}
\]

\[\Rightarrow \begin{cases} nb + mc = a + b + c \\ n \sin 2B + m \sin 2C = \sin 2A + \sin 2B + \sin 2C \end{cases} \]

\[\Rightarrow \begin{cases} n = \frac{(a + b + c) \sin 2C - (\sin 2A + \sin 2B + \sin 2C)c}{b \sin 2C - c \sin 2B} \\ m = \frac{(a + b + c) \sin 2B - (\sin 2A + \sin 2B + \sin 2C)b}{c \sin 2B - b \sin 2C} \end{cases}\]

接著藉由 Geogebra 軟體所算出來的數據（見圖十）帶入所推導出的通式，帶出的結果符合實際上的數值，這也驗證了此的通式。
（五）過內心、垂心之直線：

設一三角形 ABC，其內心為 I，垂心為 H。過 O、H 作一直線交 \(\overrightarrow{AB}, \overrightarrow{AC}\) 於 P、Q 兩點（如圖十一），設 \(\overrightarrow{AB} = n \overrightarrow{AP}, \overrightarrow{AC} = m \overrightarrow{AQ}\)：

\[
\begin{align*}
\overrightarrow{AI} &= \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC} = \frac{nb}{a+b+c} \overrightarrow{AP} + \frac{mc}{a+b+c} \overrightarrow{AQ} \\
\overrightarrow{AH} &= \frac{\tan B}{\tan A + \tan B + \tan C} \overrightarrow{AB} + \frac{\tan C}{\tan A + \tan B + \tan C} \overrightarrow{AC} \\
&= \frac{n \tan B}{\tan A + \tan B + \tan C} \overrightarrow{AP} + \frac{m \tan C}{\tan A + \tan B + \tan C} \overrightarrow{AQ}
\end{align*}
\]

\[
\left\{ \begin{array}{l}
\frac{nb}{a+b+c} + \frac{mc}{a+b+c} = 1 \\
n \tan B + \frac{m \tan C}{\tan A + \tan B + \tan C} = 1 \\
\end{array} \right.
\Rightarrow \left\{ \begin{array}{l}
nb + mc = a + b + c \\
n \tan B + m \tan C = \tan A + \tan B + \tan C \\
\end{array} \right.
\Rightarrow n = \frac{(a + b + c) \tan C - (\tan A + \tan B + \tan C)c}{b \tan C - c \tan B}, \quad m = \frac{(a + b + c) \tan B - (\tan A + \tan B + \tan C)b}{c \tan B - b \tan C}
\]

接著藉由 Geogebra 軟體所算出來的數據（見圖十一）帶入所推導出的通式，帶出的結果符合實際上的數值，這也驗證了此的通式。
「心」之所「向」──探討三角形的各心位置及關係

（六）過外心、垂心之直線：

設一三角形 ABC，其外心為 O，垂心為 H。過 O、H 作一直線交 AB、AC 於 P、Q 兩點（見圖十二），設 AB = n AP，AC = m AQ:

\[
\begin{align*}
AO &= \frac{\sin 2B}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AB} + \frac{\sin 2C}{\sin 2A + \sin 2B + \sin 2C} \overrightarrow{AC} \\
\overrightarrow{AH} &= \frac{n \tan B}{\tan A + \tan B + \tan C} \overrightarrow{AP} + \frac{m \tan C}{\tan A + \tan B + \tan C} \overrightarrow{AQ} \\
\therefore & \quad P - O - H - Q
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
\frac{n \sin 2B}{\sin 2A + \sin 2B + \sin 2C} + \frac{m \sin 2C}{\sin 2A + \sin 2B + \sin 2C} = 1 \\
\frac{n \tan B}{\tan A + \tan B + \tan C} + \frac{m \tan C}{\tan A + \tan B + \tan C} = 1 \\
n \tan 2B + m \sin 2C = \sin 2A + \sin 2B + \sin 2C \\
n \tan A + m \tan B = \tan A + \tan B + \tan C \\
\Rightarrow & \quad n = \frac{(\sin 2A + \sin 2B + \sin 2C) \tan C - (\tan A + \tan B + \tan C) \sin 2C}{\sin 2B \tan C - \sin 2C \tan B} \\
m = \frac{(\sin 2A + \sin 2B + \sin 2C) \tan B - (\tan A + \tan B + \tan C) \sin 2B}{\sin 2C \tan B - \sin 2B \tan C}
\end{cases}
\end{align*}
\]

接著藉由 Geogebra 軟體所算出的數據（見圖十二）帶入所推導出的通式，帶出的結果符合實際上的數值，這也驗證了此的通式。
「心」之所「向」——探討三角形的各心的位置及關係

參、結論：

利用各心的向量通式，我不只可以證明尤拉線的性質，還能夠求出過三角形重、內、外、垂心四心中任兩心的直線截邊長的比例。除了以上的用途外，我還希望未來能在更深入探討一些其他的位置及關係，像是各心在內接圓、外接圓上的情況，或是能求出兩心之間的長度等。也可能會加入其他三角形的特殊點來探討，像旁心、九點圓圓心、費馬點、布羅卡點、奈格爾點等特殊點（註四）。

肆、引註資料：

註一：許志農（主編）（2005）。數學 3。臺北市：龍騰。

註二：項武義（2009）。基礎幾何學。臺北市：五南。

註三：尤拉線-維基百科，自由的百科全書。2010年10月26日。取自 http://zh.wikipedia.org/zh-tw/%E6%AD%90%E6%8B%89%E7%B7%9A

註四：分類:三角形幾何-維基百科，自由的百科全書。2010年11月1日。取自 http://zh.wikipedia.org/zh-tw/Category:%E4%B8%89%E8%A7%92%E5%BD%A2%E5%87%A0%E4%BD%95